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In this article we study the interface generated by the collision between two crystals
growing layer by layer on a one-dimensional substrate through random decomposition
of particles. We relate this interface with the notion of β-path in an equivalent directed
polymer model and, by using asymptotics results from J. Baik and E. Rains, J. Stat.
Phys., 100:523–541 (2000). and some hydrodynamic tools introduced by E. Cator and
P. Groeneboom, Ann. Probab., 33:879–903 (2005), we derive a law of large numbers
for such a path and obtain some bounds for its fluctuations.
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1. INTRODUCTION

A variety of one dimensional growth models has been proposed to understand the
interplay between the geometry of the initial macroscopic profile and the scaling
properties of the growing interface. (18) A less well understood phenomenon is the
interface generated by the collision between two growing materials, named the
competition interface.3 Since the numerical simulations performed by Derrida and
Dickman(8) it is well known that the large space and time behavior of this interface
strongly depends on the geometry of the initial profile (see also Ref. 24). Later,
Ferrari, Martin and Pimentel (12) considered the competition interface between
two clusters in the lattice last-passage percolation set-up and they established a
connection between this interface and the so called second-class particle in the
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Fig. 1. Single PNG droplet.

totally asymmetric exclusion process. This connection allowed them to perform
formal calculations and obtain analytical solutions for the macroscopic description
of the competition interface.

In this work we do something similar but now in the context of a one di-
mensional layer by layer growth model, (19) named the polynuclear growth (PNG)
model. This model describes a crystal growing layer by layer on a one dimensional
substrate through random deposition of particles that nucleate on the existing
plateaus of the crystal forming new islands. These islands spread laterally with
speed 1 and adjacent islands of the same level coalesce upon meeting (Fig. 1).

To consider a multi-type crystal growth model4 we assume that the initial
substrate is divided into two different types of crystals, say type 1 if z < 0 and
type 2 if z > 0. The dynamics stipulate that if a nucleation occurs on an existing
plateau of type j ∈ {1, 2} then the new island will be of the same type. When
edges of islands having different types meet, they stop (Fig. 2).

Of course the behavior of this model depends on the geometry of the nu-
cleation events, which can be seen as a point process N in (z, s)-space-time. We
restrict our attention to a particular class of point processes N (PNG growth with
external sources) and we show a law of large numbers for the competition interface.

The PNG model can be studied in a directed polymer context (22) and we show
that the space-time path of the competition interface is a particular example of a β-
path. The collection of β-paths form a large class of paths in the directed polymer
model and we prove a general theorem that ensures its almost sure convergence.
We also show that the exponent whose value measures the order of the fluctuations
of a β-path about its asymptotic value is at most 2/3. The proofs are based on the
notion of maximal paths and its relation with β-paths, together with some bounds
for the tail of the length of the longest directed polymer connecting two distinct
points on the space-time plane obtained by Baik and Rains. (3)

The PNG and the directed polymer models are intrinsically related to the
Hammersley’s interacting particle system and another example of a β-path arises
naturally in this context, namely the second-class particle. As a consequence, we

4 For more information on multi-type growth models we address to Ref. 21 and the references therein.
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Fig. 2. Two PNG droplets.

obtain a law of large numbers for this special particle which, together with some
hydrodynamic ideas introduced by Cator and Groeneboom, (5) will also play and
important role in studying the asymptotics of β-paths.

In the next sections we formally introduce all the models considered here and
we state the main results.

1.1. Polynuclear Growth with External Sources

The surface at time s ≥ 0 is described by an integer-valued function
h(., s) : z ∈ R → h(z, s) ∈ Z, named the height profile at time s, for which the dis-
continuity points have upper limits. We consider the initial condition h(0, z) = 0
for all z ∈ R. For each s > 0 the function h ( ., s) has jumps of size one at the
discontinuity points, called up-step if h increases and down-step if h decreases
(Fig. 1). A nucleation event at position (z, s) is a creation of a spike, a pair of up-
and down-steps, over the previous layer. The up-steps move to the left with unit
speed and the down-steps move to the right with unit speed. When an up- and
down-step collide, they disappear.

The nucleation events form a locally finite point process in space-time. On
{z = s} we put a Poisson point process D+ of intensity λ ≥ 0 while on {z = −s}
we put a Poisson point process D− of intensity ρ ≥ 0. On {|z| < s} we put a
Poisson point process D of intensity 1. We assume that outside {|z| ≥ s} there
is no nucleation event and that all the Poisson point processes involved in this
construction are mutually independent. To know the value of h(z, s) one draws the
trajectories of the up- and down-steps in the space-time (z, s)-plane. When two
of these paths meet (as s increases) they stop, which reflects the disappearing of
the corresponding up- and down-step. In this way the space-time is divided into
regions bounded by piecewise straight lines with slopes equal to 1 or −1 (Fig. 3).
For fixed z ∈ R

2 the height h(z, s) is constant in each region.
To introduce the multi-type growth model we assume that the initial layer is

divided into two different types of crystals, say 1 if z < 0 and 2 if z > 0. Consider
the rule which stipulates that if a spike is created over crystal j then it will belong
to this material, and that when a down-step of type 1 collides with an up-step of
type 2 they stop (Fig. 2). Thus an interface between these two growing crystals
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Fig. 3. The nucleation events. Each point is labeled by its type.

is formed. We denote by ϕn the position in the z-axis of the collision between
the different types of crystals at the n-th layer and by σn the time for which
this happens, with the convention that ϕ0 = 0 and σ0 = 0. Define the process
(ϕ(s), s ≥ 0) by setting ϕ(s) = ϕn for s ∈ [σn, σn+1). We prove:

Theorem 1. Assume that 0 ≤ λρ ≤ 1. One has almost surely that

lim
s→∞

ϕs

s
= W .

where

W ∈
[
ρ2 − 1

ρ2 + 1
,

1 − λ2

1 + λ2

]
.

Remark 1. In the stationary regime λρ = 1 we obtain a deterministic limiting
value for the inclination of the competition interface. Namely, W = 1−λ2

1+λ2 . In Sec. 2
we discuss the correspondence between the limiting value W and the macroscopic
behavior of the height profile.

1.2. Directed Polymer Set-up and β-paths

There is a link between the PNG growth model and a model for directed
polymers on Poisson points. (23) This directed polymer model can be regarded as
a last-passage percolation model on {x ≥ 0 , t ≥ 0} and is defined as follows.
Put a Poisson point process P of intensity 1 in the strictly positive quadrant
{x > 0 , t > 0}. Independently of P we also have mutually independent Poisson
point processes, say X and T , on the x- and t-axis and of intensities λ, ρ ≥ 0,
respectively. For P and Q on the plane, define that P ≺ Q if both coordinates of
P are lower or equal than those of Q. For a given realization of the three Poisson
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point processes, a weakly up/right path, or directed polymer, (P, P1, . . . , Pl , Q),
starting at P and ending at Q, is an oriented and piecewise linear path γ connecting
P ≺ P1 ≺ · · · ≺ Pl ≺ Q, where each Pj is a Poissonian point for j = 1, . . . , l.
The length l(γ ) of the path is the number of Poissonian points used by γ and
�(P, Q) denotes the set of all weakly up/right paths from P to Q. The maximal
length, or the last-passage time, between P and Q is defined by

Lm(P, Q) = max
γ∈�(P,Q)

l (γ ) . (1.1)

Every γ ∈ �(P, Q) such that l(γ ) = Lm(Q) is called a maximal path. We as lo
consider the growth process (Gk)k≥0 defined by

Gk = {Q : Lm(0, Q) ≤ k − 1}

for k ≥ 1 and for convenience we set G0 := {(0, 0)}. We denote by ∂Gk the right
(hand-side) boundary of Gk .

Consider the transformation A : (x, t) → (z, s) that rotates the (x, t)-plane
by 45◦ in the anti-clockwise orientation. If the Poisson point processes involved in
the construction of both processes are related by A, A(X ) = D−, A(T ) = D+ and
A(P) = D, then the link is apparent. In fact, h(z, s) equals the number of lines
crossed by any piecewise linear path from (0, 0) to (z, s), with slope between −1
and 1. In particular, one considers the paths which cross them at the nucleation
points. These are maximal paths introduced above up to a 45◦ rotation, and thus it
follows that h(z, s) = Lm(0, (x, t)).

To see the rule, in this directed polymer model, played by the competition
interface we introduce the notion of β-paths. A β-point5 Q ∈ R

2
+ is a concave

corner of ∂Gk for some k ≥ 1. Thus, in the PNG model, β-points will corresponds
to the collisions between up- and down- steps, up to a 45◦ rotation. We define that
(Pn)n≥0, a sequence of points in {x ≥ 0 , t ≥ 0}, is a β-path if it satisfies: (i)
Pn ≺ Pn+1; (ii) Pn ∈ ∂Gn; (iii) Pn is a β-point. Recalling that ϕn denotes the
position in the z-axis of the collision between the different types of crystals at the
n-th layer, and that σn denotes the time in which this happens, one can see that
the path (Rn)n≥0, where Rn := (ϕn, σn), is a β-path up to a 45◦ rotation (see the
trajectory in Fig. 3).

For P = |P|(cos θ, sin θ ) and Q = |Q|(cos α, sin α), with α, θ ∈ [0, π/2],
let ang(P, Q) = |β − α| be the angle in [0, π/2) between P and Q. We prove:

5 We follow the terminology introduced by Groeneboom (14) in the Hammersley’s process context (see
Sec. 1.3).
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Theorem 2. Assume that 0 ≤ λρ ≤ 1. One has almost surely that, if (Pn)n≥1 is
a β-path, then

∃ lim
n→∞

Pn

|Pn| = V = (cos θ, sin θ ) ,

where tan(θ ) ∈ [λ2, ρ−2].

We remark that Theorem 1 follows directly from Theorem 2. Concerning the
fluctuations around its asymptotic angle we have:

Theorem 3. Assume that 0 ≤ λρ < 1. Then for all δ ∈ (0, 1/3) there exists a
constant c > 0 such that, almost surely,

ang(Pm, V ) ≤ c|Pm |−δ for all large m .

We note that Theorem 3 tell us that, in the regime 0 ≤ λρ < 1, for all ε > 0
the fluctuations of a β-path (Pn)n≥0 about its asymptotic value V |Pn| are at most
of order |Pn|2/3+ε . We do believe that Theorem 2 is almost optimal, i.e. that the
correct exponent should be 2/3.

1.3. Hammersley’s Process and Second-class Particles

Aldous and Diaconis (1) introduced a continuous time version of the inter-
acting particle process in Hammersley(15) using the following rule. Start with the
Poisson point process P on {x > 0 , t > 0}, of intensity 1, and move the interval
[0, x] vertically through a realization of this point process; if this interval catches
a point that is to the right of the points caught before, a new point (or particle)
is created in [0, x] at this point; otherwise we shift to this point the previously
caught point that is immediately to the right and belongs to [0, x]. The number of
particles, resulting from this rule, at time t on the the interval [0, x] is denoted by
N (x, t) and the evolving particle process (N (., t) , t ≥ 0) is called the Hammers-
ley’s process. In this work we consider an extension of the Hammersley’s process,
as introduced by Groeneboom,(14) where we also have two others Poisson point
processes X and T , of intensities λ and ρ and on the x- and t-axis, respectively.
Points in X are called sources while points in T are called sinks. Now we have
the following rule: start the interacting particle process with a configuration of
sources on the x-axis, which are subjected to the Hammersley interacting rule in
the strictly positive quadrant and which escape through the sinks on the t-axis, if
such a sink appears to the immediate left of a particle. Now, N (x, t) is the number
of particles in (0, x] × {t} plus the number of sinks in {0} × [0, t]. When ρ = 1/λ,
we have a stationary process. (14)
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Denote by �0,�1,�2 . . . the space-time paths of the Hammersley particles
with the convention that �0 = {(0, 0)} and that �k lies below �k+1. Thus, ∂Gk

equals �k (recall we have constructed both process with the same Poissonian
points). Again, if the Poissonian processes are related by A, the rotated space-time
paths of the up- and down steps correspond to the space-time paths of Hammersley
particles. With this picture in mind, one can also see that the β-points are the left
turns of the space-time paths of the particles in the Hammersley’s process (Fig. 4).
We remark also that, in the stationary regime λρ = 1, Cator and Groeneboom(5)

proved that the β-points inherit the Poisson property of P , which allows us to see
a duality between β-paths and maximal paths: a finite β-path is a maximal path
for the time reversal process.

It turns out that another example of a β-path appears naturally in the Ham-
mersley’s process: the so called second-class particles. A normal second-class
particle is a special particle that starts at the origin and jumps to the previous posi-
tion of the ordinary Hammersley particle that exits through the first sink at the time
of the exit, and successively jumps to the previous position of particles directly to
the right of it, at times where these particles jump to a position to the left of the
second-class particle (Fig. 4). The position of the second-class particle at time t
is denoted by Xt . Thus, if τn denotes the time of the n-th jump of the second-class
particle (with the convention that τ0 = 0) then (Qn)n≥0, where Qn := (Xτn , τn), is
a β-path.

Remark 2. In the stationary regime λρ = 1 Cator and Groeneboom(5) proved
that, almost surely,

lim
t→∞

Xt

t
= 1

λ2
.
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They also showed(6) that Xt − λ−2t ∼ t2/3.

Here we prove:

Theorem 4. Let (Xt , t ≥ 0) be the trajectory of a second class particle which is
initially at the origin in the Hammersley’s process with sinks, i.e. ρ > 0, and such
that λρ < 1. Then one has, almost surely,

lim
t→∞

Xt

t
= Z

where Z is a random variable with the following distribution:

P(Z ≤ r ) =

⎧⎪⎨
⎪⎩

0, r ≤ ρ2,

ρ−1−
√

r−1

ρ−1−λ
, ρ2 < r ≤ λ−2,

1, λ−2 < r .

The almost sure convergence in the regime ρ > 0 and 0 ≤ λρ < 1 follows
directly from Theorem 2, since the space-time path of a second-class particle can
be regarded as a β-path. The description of the limit distribution6 is obtained in
Sec. 3.1.

In a further paper (7) we shall study these models in the regime λρ > 1 and we
shall prove the almost sure convergence of an arbitrary β-path to the limit value
ρ/λ. Differently from the regime λρ ≤ 1, in this case the fluctuations of β-paths
should be Gaussian. We note that, in the PNG context, this corresponds to the
convergence of the competition interface to (ρ − λ)/(ρ + λ). We also remark that,
analogously to the second class particle in the totally asymmetric exclusion pro-
cess, (9) the convergence to a deterministic limit value with Gaussian fluctuations
is due to the development of a shock in the evolution of the macroscopic profile
(hydrodynamic limit).

Overview. The paper is organized as follows. We begin by studying the stationary
regime λρ = 1 (Sec. 2) and we prove Theorem 2 (in this regime) by using Remark 2
together with the concept of dual second-class particles. After that we relate
the asymptotics for competition interfaces and second-class particles with the
respective partial differential equations associated to the macroscopic evolution
of the systems. In Sec. 3, we start by deriving the convergence in distribution of
the second-class particle with coupling ideas of Ferrari and Kipnis (10) and general
hydrodynamics results of Seppäläinen. (25) Next we use some results of Baik and
Rains (3) concerning the tail of Lm , and the notion of δ-straightness of maximal

6 We remark that the limit in distribution of the second-class particle when λρ < 1 was also identified
by Cator and Dobrynin. (4)



On the Collision between two PNG Droplets 1153

paths introduced by Newman, (20) to prove the almost sure convergence of β-paths
in the regime 0 ≤ λρ < 1 and to obtain the fluctuation upper bound.

2. STATIONARY GROWTH AND MACROSCOPIC DESCRIPTION

2.1. Dual Second-class Particle

The concept of a dual second-class particle was introduced by Cator and
Groeneboom(5) to prove the convergence of the normal second-class particle in
the stationary regime. Recall that to determine the process t → L(., t) at point x
we shift until time t the interval [0, x] vertically through a realization and we follow
the Hammersley interacting rule allowing particles to escape through the sinks.
By symmetry, we can also introduce the dual process x → L∗(x, .) by running the
same rule, but now from left to right, i.e. sinks for L become sources for L∗ and
sources for L become sinks for L∗. Notice that, in the stationary regime λρ = 1,
both processes L and L∗ have the same law. We denote X∗ the second-class
particle with respect to the dual process L∗ and we denote by X∗

t the intersection
between the space-time path of the dual second-class particle with [0,∞) × {t}.
Trajectories of X and X∗ are shown in Fig. 5.

Remark 3. The symmetry of the model and Remark 2 imply that if λρ = 1 then,
almost surely,

∃ lim
t→∞

X∗
t

t
= 1

λ2
.

normal dual

time

space

t

Fig. 5. Normal and dual second-class particles
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An easy but useful observation is that the β-paths (Qn)≥0 and (Q∗
n)≥0, which

correspond to the normal and dual second-class particles are the left- and right-
most β-paths (for all λ, ρ), respectively:

Lemma 1. Let (Qn)≥0 and (Q∗
n)≥0 be the β-paths that correspond to the normal

and dual second-class particles respectively, and let (Pn)≥0 be a β-path (recall we
denote P = (P(1), P(2)). Then

Q∗
n(2)

Q∗
n(1)

≤ Pn(2)

Pn(1)
≤ Qn(2)

Qn(1)
.

Together with Lemma 1, Remark 3 implies the convergence of β-paths in the
regime λρ = 1.

2.2. Macroscopic Evolution: Hamilton-Jacobi and Burges Equations

Clearly it is desirable to establish a correspondence between the microscopic
structure of the interface generated by the collision between two PNG droplets and
its macroscopic behavior. For the PNG droplet, it is known that if h̄(z, s) denotes
the macroscopic height profile then h̄ satisfies the Halmilton-Jacobi equation

∂s h̄ − v(∂z h̄) = 0 (2.2)

with the inclination-dependent growth velocity v(u) = √
2 + u2. (22,25) For the sta-

tionary growth ρλ = 1 the solution is h̄(z, s) = sv(u) + zu with u = (ρ − λ)/
√

2.
Since

v′(u) = u√
2 + u2

= ρ − λ

ρ + λ
= 1 − λ2

1 + λ2

we have that the line {z = v′(u)s} is the macroscopic analogue of the competition
interface. We also remark that, if one considers the fluctuations of the height profile
then the slope v′(u) plays an important rule: the height fluctuations are Gaussian
with variance proportional to t except along the line {z = v′(u)s} where they have
the KPZ scaling form. (22,23)

In the Hammersley context, we have that if u(x, t) denotes the macroscopic
density profile then u satisfies the Burgers equation

∂t u + ∂x g(u) , (2.3)

where g(u) = 1/u. (25) The characteristics x(a, t) emanating from a are the solu-
tions to the ordinary differential equation

x ′(t) = g′(u(x, t))
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with initial condition x(0) = a. In the stationary regime ρλ = 1 the characteristics
are given by the lines x = tλ−2 + a, which brings us the macroscopic analogue of
the second-class particle, or more generally, of the β-paths.

We finish this section by saying a few words concerning the macroscopic
evolution when 0 ≤ λρ < 1. For the PNG droplet, the solution for the Hamilton-
Jacobi equation is of the form h̄(cs, s) = s f (c) where f solves the equation
f (c) − c f ′(c) = v( f ′(c)) and the parameter c is related to the local inclination u =
f ′(c) by c = −v′(u). (22,23) For instance, when λ = ρ = 0 we have the ellipsoidal
shape f (c) =

√
2(1 − c2). With this information one obtains that the macroscopic

height profile has a curved piece between the lines {z = s(ρ2 − 1)(ρ2 + 1)−1} and
{z = s(1 − λ2)(1 + λ2)−1}. In the Hammersley context, this corresponds to the
development of a rarefaction front in the solutions of the Burgers equation, or
equivalently, to the existence of infinitely many characteristics emanating from
the origin. Theorem 2 shows that the macroscopic analogue of a β-path will be
one of these characteristics.

3. RAREFACTION FRONT

3.1. Convergence in Distribution of Second Class Particles

The limit law of the second class particle follows from the computation below
as well as from Cator and Dobrynin. (4) Let ηt , t ≥ 0 be the point process obtained
by starting with a Poisson Process of intensity λ in (0,∞) at time 0, and letting
it develop according to Hammersley’s process on (0,∞), with Poisson sinks of
intensity ρ with λρ < 1 and a Poisson point process of intensity 1 in the interior of
the first quadrant. Furthermore, let ηh

t , t ≥ 0 be the process coupled to ηt , t ≥ 0,
by using the same points in the first quadrant and on the t-axis as used for η. At
time 0, we consider the same sources on the interval (h,∞) and on the interval
[0, h] we add an independent Poisson process of intensity ρ−1 − λ. Denote by
ηt [x, y] the number of particles in the interval [x, y] at time t and similarly by
ηh

t [x, y] for the coupled process.
Let

Fη

h (r, t) = ηt [0, r ] − ηh
t [0, r ]

and

Fη

h,ε(r, t) = Fη

h (rε−1, tε−1) .

Notice that in the absence of extra sources in [0, h] we have Fη

h,ε(r, t) = 0.

If there is a unique source in [0, h] coming from the Poisson point process of
intensity ρ−1 − λ (which happens with probability (ρ−1 − λ)he−ρ−1h) we have a
discrepancy which behaves like a second class particle. Denoting it’s position at
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time t by Xt,h we get that Fη

h,ε(r, t) = −1 iff Xtε−1,h ≤ rε−1. Therefore

E
(
Fη

h,ε(r, t)
) = −(ρ−1 − λ)he−ρ−1h

P(Xtε−1,h ≤ rε−1) + o(h)

Dividing by h and taking limit when h and ε go to 0 we get

lim
ε→0

lim
h→0

E

(
Fη

h,ε(r, t)

h

)
= −(ρ−1 − λ) lim

ε→0
P(Xtε−1 ≤ rε−1)

On the other hand, by combining the stationarity of the process ηh on [0, h] ×
[0, t] with the fact that the number of particles at time t on [0, r ] equals the number
of space-time curves crossing the rectangle [h, r ] × [0, t] plus the number of
sources on [0, h], we get

E
(
Fη

h,ε(r, t)
) = E

(
ηtε−1 [rε−1 − h, rε−1] − ηh

0 [0, h]
)

= P
(
ηtε−1 [rε−1 − h, rε−1] = 1, ηh

0 [0, h] = 0
)

− P
(
ηtε−1 [rε−1 − h, rε−1] = 0, ηh

0 [0, h] = 1
) + o(h) .

Since

P
(
ηtε−1 [rε−1 − h, rε−1] = 1, ηh

0 [0, h] = 0
)

− P
(
ηtε−1 [rε−1 − h, rε−1] = 0, ηh

0 [0, h] = 1
)

= P(ηtε−1 [rε−1 − h, rε−1] = 1) − P
(
ηh

0 [0, h] = 1
) + o(h) ,

and

P
(
ηh

0 [0, h] = 1
) = (ρ−1h)e−ρ−1h ,

together with the hydrodynamics results of Seppäläinen(25), this yields

lim
ε→0

lim
h→0

E

(
Fη

h,ε(r, t)

h

)
= u(r, t) − ρ−1

where u(r, t) is the unique entropic solution of (2.3), given by

u(x, t) = ρ−1 1{ρ−2x ≤ t} +
√

t x−1 1{λ2x ≤ t < ρ−2x} + λ 1{t < λ2x} .

Consequently,

lim
ε→0

P (εXtε−1 ≤ r ) = ρ−1 − u(r, t)

ρ−1 − λ

which gives the limit law of the second-class particle.
Concerning the limit angle θ of the competition interface when 0 ≤ λρ < 1,

at the present moment we do not know how to calculate its distribution but we
do know it must be random. In fact, this is true for any β-path and this is a
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consequence of the fact that every β-path is always in between the trajectories of
the normal and the dual second-class particles. Indeed, if there exists a ∈ [λ2, ρ−2]
such that with probability one tan(θ ) = a then with probability one Z ∈ [λ2, a]
and Z ′ ∈ [a, 1/ρ2], where Z and Z ′ denote the limit value of the normal and the
dual second-class particles. However, this leads to a contradiction since we do
know that Z and Z ′ have continuous distributions with support on [λ2, ρ−2].

3.2. δ-straightness of Maximal Paths

In (3) Baik and Rains used an analytical point of view to study the asymptotics
of Lm (see also Ref. 2 for the regime λ = ρ = 0). The following is a consequence
of their bounds for the tail of Lm : if λ1, λ2 ∈ [0, 1) then there exists constants
c j > 0 such that for k ≤ −c1 and t ≥ c2 we have

P
(
Lλ2

λ1
(t) − 2t ≤ kt1/3

) ≤ c3e−|k|3 , (3.4)

and that for k ≥ c1 and t ≥ c2 we have

P
(
Lλ2

λ1
(t) − 2t ≥ kt1/3

) ≤ c4e−c5k3/2
, (3.5)

where Lλ2
λ1

(t) := Lm(t, t), λ1 is the intensity of points in x-axis and λ2 is the
intensity of points in the t-axis (see Eqs. (5.2) and (5.14) in Ref. 3). Notice that
for λρ < 1 and ρ2 < x/t < 1/λ2,

P
(
Lρ

λ(x, t) − 2
√

xt > k
(√

xt
)1/3) = P

(
Lλ2

λ1
(
√

xt) − 2
√

xt > k(
√

xt)1/3
)

where λ1 = λ
√

x/t, λ2 = ρ
√

t/x ∈ [0, 1). Therefore, if we denote α(x, t) :=
2
√

xt , for all ε > 0 one can find constants b j > 0 such that if ρ2 + ε < x/t <

1/λ2 − ε then

P
(|Lm(0, (x, t)) − α(x, t)| > k(

√
xt)1/3

) ≤ b1e−b2k3/2
. (3.6)

Since the work of Kardar, Parisi and Zhang(17) it is known there is a strong
relation between the fluctuations of Lm(0, Q) and the deviations of a maximal
path γ (0, Q), connecting 0 to Q, about the line segment [0, Q]. It is expected that
the scaling relation χ = 2ξ − 1 holds, if

|Lm(0, Q) − α(Q)| ∼ |Q|χ and sup
P∈γ (0,Q)

d(P, [0, Q]) ∼ |Q|ξ ,

where d(A, B) denotes the euclidean distance between A and B. Since for this
Poisson last-passage model we do know that χ = 1/3, we should have that ξ =
2/3. Johansson(16) proved that ξ = 2/3 when λ = ρ = 0 by using a geometric
idea developed by Newman, (20) which is based on the curvature properties of the
limit shape of the rescaled growth process n−1Gn . Newman also introduced the
notion of δ-straightness of a maximal path as follows. For each Poissonian point
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P , let Rout(P) be the set of all Poissonian points Q, P ≺ Q, such that there is a
maximal path from 0 to Q passing through P . For θ ∈ (0, π/4) denote Co(P, θ )
the cone with axis through P and 0 and with angle θ . Let δ > 0. We say that
Rout(P) is δ-straight if for some constant c > 0

Rout(P) ⊆ Co(P, c|P|−δ) .

Proposition 1. Assume that 0 ≤ λρ < 1. For any ε > 0 and δ ∈ (0, 1/3), al-
most surely, for all but finitely many Poissonian points P = (P(1), P(2)) with
P(2)/P(1) ∈ [λ2 + ε, ρ−2 − ε] one has that Rout(P) is δ-straight.

For λ = ρ = 0 this is exactly Lemma 2.4 of Wüthrich. (26) To avoid repeti-
tions we give just a sketch of the proof which repeats the geometric argument of
Newman.

Proof of Proposition 1. Denote by AP the set of Poisson points Q that satisfies:
(i) P ≺ Q; (ii) ang(P, Q) ∈ [α(P)−δ, 2α(P)−δ]; (iii) α(Q) ≤ 2α(P). Notice that
α(a P) = aα(P) and so α(P) has the same order of |P|. If |P| is sufficiently large
then we must have that for all Q ∈ AP , Q(2)/Q(1) ∈ [λ2 + ε/2, ρ−2 − ε/2]. Now,
assume there is Q ∈ Rout(P) ∩ AP . Then P belongs to some maximal path from
0 to Q which implies that

Lm(0, Q) = Lm(0, P) + L(P, Q) ,

and so

(α(Q) − L(0, Q)) + (L(0, P) − α(P)) + (L(P, Q) − α(Q − P))

= α(Q) − α(P) − α(Q − P) =: �(P, Q) . (3.7)

By Lemma 2.1 of Wüthrich(26) (which is the desired curvature property for α), for
such a P and Q,

�(P, Q) ≥ |P|1−2δ .

By using (3.6) one can prove that if δ ∈ (0, 1/3), or equivalently (1 − 2δ) = χ ∈
(1/3, 1), then (3.7) does not occur for all but finitely many P .

As a consequence of the preceding paragraph, one gets that for all but finitely
many P , if Q ∈ Rout(P) and α(Q) ≤ 2α(P) then either

ang(P, Q) ≤ α(P)−δ

or

ang(P, Q) > 2α(P)−δ .
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Since, for sufficiently large |P|, to go from ∂Co(P, α(P)−δ) to some point Q ∈
Co(P, 2α(P)−δ)c a maximal path must pick one Poissonian point Q′ with

ang(P, Q′) ∈ [α(P)−δ, 2α(P)−δ] ,

the second item in the above two possibilities can be deleted.
Therefore, for all but finitely many P if Q ∈ Rout(P) and α(Q) ≤ 2α(P)

then

ang(P, Q) ≤ α(P)−δ .

Now we claim that this implies δ-straightness. In fact, for every Q ∈ Co(P, ε1)
the cone Co(Q, ε2) is contained in the cone Co(P, ε1 + ε2). By induction, for

εm(P) =
m−1∑
j=0

(2 jα(P))−δ ,

Rout(P) ⊆ Co(P, εm(P))
⋃

α(Q)≥2mα(P)

Rout(Q) .

By noticing that εm(P) ≤ c, for some constant c = c(δ) > 0, one can easily finish
this proof. �

As a consequence of the δ-straightness property of maximal paths we have:

Corollary 1. Let a, a′ ∈ (ρ2, λ−2) with a < a′. Almost surely, if (Qi )i≥1 and
(Q′

j ) j≥1 are two sequences of Poissonian points such that Qi ≺ Qi+1,Q′
j ≺ Q′

j+1,
limi→∞ Qi = lim j→∞ Q′

j = ∞ and

lim sup
Q′

j (2)

Q′
j (1)

< 1/a′ < 1/a < lim inf
Qi (2)

Qi (1)

then there are only finitely many i such that, for some j , Q′
j ∈ Rout(Qi ). Analo-

gously, there are only finitely many j such that, for some i , Qi ∈ Rout(Q′
j ).

Proof of Corollary 1. Divide the positive quadrant into 5 regions as follows:

C0 := {0 ≤ t ≤ λ2x} ,

C1 := {0 ≤ λ2x ≤ t ≤ x/a} ,

C2 := {0 ≤ x/a ≤ t ≤ x/a′} ,

C3 := {0 ≤ x/a′ ≤ t ≤ ρ2} ,

and finally,

C4 := {0 ≤ x/ρ2 ≤ t} .



1160 Coletti and Pimentel

Pick a δ ∈ (0, 1/3) and notice that, almost surely, for sufficiently large |Q|:
1. Rout(Q) is δ-straight;
2. If Q ∈ C0 and Q ≺ Q′ ∈ C3 then every optimal path from Q to Q′ has

a Poissonian point in C1, and if Q ∈ C4 and Q ≺ Q′ ∈ C1 then every
optimal path from Q to Q′ has a Poissonian point in C3;

3. If Q ∈ C1 then Co(Q, c|Q|−δ) ∩ (C3 ∪ C4) = ∅ and if Q ∈ C3 then
Co(Q, c|Q|−δ) ∩ (C1 ∪ C0) = ∅.

Now, assume that Q′
j ∈ Rout(Qi ), |Q′

j |, |Qi | ≥ M and Q′
j (2)/Q′

j (1) < 1/a′.
If Qi ∈ C3 then, by (1) and (3), Q′

j �∈ (C1 ∪ C0), which yields to a contradiction.

If Qi ∈ C4, by (2), there exists a Q̄i ∈ C3 such that Q′
j ∈ Rout(Q̄i ), and so, by (1)

and (3), we also get a contradiction. Since, by assumption, Qi ∈ C3 ∪ C4 for all
but finitely many i , there are only finitely many i such that, for some j , an optimal
path from 0 to Q′

j passes through Qi . The same proof works for the analogous
case.

3.3. Asymptotics for β-paths

The idea to control the deviations of a β-paths, when 0 ≤ λρ < 1, is to show
that if (Pn)n≥0 is a β-path then for all n ≥ 1 we can construct two maximal paths,
both starting from (0, 0) and ending at Pn , such that the path (P0, . . . , Pn) is
enclosed by them (see Fig. 6).

Lemma 2. Almost surely, if (Pn)n≥0 is a β-path then for all n ≥ 0 there exist two
maximal paths γ +

n and γ −
n in �(0, Pn) such that γ +

n is above (P0, . . . , Pn) and γ −
n

is below (P0, . . . , Pn).

P1

P2

P3

P4

P5

P6

Fig. 6. Two geodesics enclosing a beta-path.
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Proof of Lemma 2. Let G+
n = (G+

n (1), Pn(2)) be the Poissonian point (coming
from one of the three Poisson point processes) that first appears to the left (hand-
side) of Pn in level ∂Gn . Fix Q ∈ R

2
+ and let AQ = {P ≺ Q}. Suppose that

G+
n , . . . , G+

n−k have already been defined for k < n. Then set G+
n−(k+1) to be the first

Poissonian point in level ∂Gn−(k+1) ∩ AG+
n−k

to the left of Pn−(k+1). Notice that if

one of the G+
k belongs to the t-axis then G+

0 , . . . , G+
k−1 belong to the t-axis as well.

By construction, the oriented path (G+
0 , . . . , G+

n , Pn) is a geodesic (since it picks
one point in each level behind Pn) which is always above (P0, . . . , Pn). Similarly,
we can construct a geodesic (G−

0 , . . . , G−
n , Pn) which is below (P1, . . . , Pn). In

this case, we proceed as follows: let G−
n = (Pn(1), G−(2)n) be the Poissonian point

that first appear to the right of Pn in level ∂Gn . Suppose that G−
n , . . . , G−

n−k have
already been defined for k < n. Then set G−

n−(k+1) to be the first Poissonian point

in level ∂Gn−(k+1) ∩ AG−
n−k

to the right of Pn−(k+1). Notice that if one of the G−
k

belongs to the x-axis then G−
0 , . . . , G−

k−1 belong too. By construction, the path
(G−

0 , . . . , G−
n , Pn) is a geodesic which is always below (P0, . . . , Pn). �

Proof of Theorem 2 (when 0 ≤ λρ < 1). First we claim that, almost surely, if
(Pn)n≥1 is a β-path then

λ2 ≤ lim inf
n→∞

Pn(2)

Pn(1)
≤ lim sup

n→∞
Pn(2)

Pn(1)
≤ 1

ρ2
. (3.8)

By Lemma 1, to obtain (3.9) it suffices to show

λ2 ≤ lim inf
n→∞

Q∗
n(2)

Q∗
n(1)

≤ lim sup
n→∞

Qn(2)

Qn(1)
≤ 1

ρ2
.

where (Qn)≥1 and (Q∗
n)≥1 are the β-paths corresponding to the normal and dual

second-class particles, respectively.
The second inequality follows by coupling the Hammersley’s process with pa-

rameters λ, ρ, with the stationary Hammersley’s process with parameters 1/ρ, ρ.
Since 1/ρ > λ (more sources for the stationary process), Xt (λ, ρ) moves to the
right faster than Xt (1/ρ, ρ), i.e. the normal second-class particle for the original
process is always to the right of the normal second-class particle for the stationary
process. (5) Together with Remark 3, this yields the second inequality. To show the
first inequality, we couple the Hammersley process, with parameters λ, ρ, with the
stationary process with parameters λ, 1/λ (more sinks for the stationary process)
and repeat the same argument for the dual second-class particle.

By (3.8), if (Pn)n≥1 does not converge then there exist b < a < a′ < b′ such
that

λ2 ≤ lim inf
n→∞

Pn(2)

Pn(1)
<

1

b′ <
1

a′ <
1

a
<

1

b
< lim sup

n→∞
Pn(2)

Pn(1)
≤ 1

ρ2
. (3.9)
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Now let m < n and assume that

Pm(2)

Pm(1)
<

1

b′ <
1

b
<

Pn(2)

Pn(1)
.

Consider the optimal path γ −
n , giving by Lemma 2, which connects 0 to Pn . Since

γ −
n lies below (P0, . . . , Pm, . . . , Pn), if |Pm | is sufficiently large then one can find

Q′, Q ∈ γ −
n (Poissonian points) with Q ∈ Rout(Q′) and such that

Q′(2)

Q′(1)
<

1

a′ <
1

a
<

Q(2)

Q(1)
.

Therefore, if (3.9) occurs then one can construct two sequences of Poissonian
points, say (Q′

j ) j≥1 and (Qi )i≥1, with Qi ∈ Rout(Q′
j ) and such that

Q′
j (2)

Q′
j (1)

<
1

a′ <
1

a
<

Qi (2)

Qi (1)

for all i, j ≥ 1. By Proposition 1, this occurs with probability 0 and thus (Pn)n≥1

must converge almost surely. �

Proof of Theorem 3. From Theorem 2, we have the almost sure convergence of the
normal and dual second-class particles and, by a previous calculation (Sec. 3.1),
their limits have a continuous distribution. Combining this with Lemma 1, one
gets that, almost surely, there exists a sufficiently small (random) ε > 0 such that
for all β-paths (Pn)n≥0, and n sufficiently large,

λ2 + 2ε <
Pn(2)

Pn(1)
< ρ−2 − 2ε .

Choose a sufficiently large M such that if |P| ≥ M and

λ2 + 2ε <
P(2)

P(1)
< ρ−2 − 2ε

then for any Q ∈ Co(P, c|P|−δ),

Q(2)

Q(1)
∈ [λ2 + ε, ρ−2 − ε] .

Denote by θm the angle in [0, π/2] such that tan(θm) = Pm (2)
Pm (1) and such that

|Pm | ≥ M and that

Pn(2)

Pn(1)
> tan(θm + 3c|Pm |−δ)

for some n ≥ m. Consider the the maximal path γ −
n giving by Lemma 2. Since γ −

n
lies below (P0, . . . , Pm, . . . , Pn), for sufficiently large M , there exist Q, Q′ ∈ γ −

n
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with Q′ ∈ Rout(Q) and such that

Q(2)

Q(1)
< tan(θm + c|Pm |−δ) and

Q′(2)

Q′(1)
> tan(θm + 2c|Pm |−δ) .

Since |Q| ∼ |Pm |, this would imply that Rout(Q) is not δ-straight which, by
Proposition 1, occurs with probability 0. If

Pn(2)

Pn(1)
< tan(θm − 3c|Pm |−δ)

one can repeat the same argument, but now considering the maximal path γ +
n that

lies above (P0, . . . , Pm, . . . , Pn), to prove that it does not happen with probability
1. Therefore, for sufficiently large m and for all n ≥ m,

ang(Pm, Pn) ≤ 3c|Pm |−δ .

By sending n → ∞, one gets Theorem 3. �
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